B Tagging and Mixing at Tevatron (Focusing on Bs mixing prospect) Ting Miao (FNAL) - •Key issues for B mixing analyses - Current flavor tagging and Bs yield results - Prospect in the next few years ## **B mixing and CKM matrixes** - $\Delta \mathbf{m_s}/\Delta \mathbf{m_d} = (\mathbf{M_{Bs}}/\mathbf{M_{B0}}) \xi |\mathbf{V_{ts}}/\mathbf{V_{td}}|^2$ - Exploring one side of CKM triangle ## **B**⁰ mixing # Δm_d is well measured and serves CDF/D0 as nice calibration tool $\Delta m_d = 0.512 \pm 0.09 \pm 0.04 \text{ ps}^{-1}$ #### $\Delta m_d = 0.502 \pm 0.006 \text{ps}^{-1}$ (HFAG 2003) ## **Bs** mixing - B_s mixing is the top priority for B physics at Tevatron - A challenging measurement due to the rapid oscillation Δ ms>14.4 ps⁻¹@ 90% CL (HFAG 03) 4 oscillations per lifetime cycle Unique Tevatron opportunity Combined limits of indirect measurements using amplitude methods from LEP, SLD & CDF Run I ## Key issues for Bs mixing ### High statistics with good signal-to-background ratio - Efficient triggering and fine mass resolution - Trigger on high pT leptons and displaced tracks (SVT/STT) #### Efficient Initial B flavor identification - Only 20-40% chance for both B in the detector acceptance - e/μ coverage (SLT), tracking (JetQ/SST) and PID (Kaon) ### Excellent proper decay length - Momentum and vertex resolution - Utilize the fully reconstructed decays ## **CDF Silicon Detector** - •8 layers with improved 3D ability - •L00 improves impact parameter resolution by 30-50% - •ISL extends tracking coverage for e/ μ systems to $|\eta|=2$ ## CDF Silicon Vertex Trigger at Level-2 ### Trigger on displaced tracks from b $L1 \operatorname{track} + \operatorname{Si} \operatorname{hits} = L2 \operatorname{SVT}$ ### •Excellent L2 impact parameter resolution σ= 35μm ⊕ 33 μm (resol⊕ beam) = 48 μm ### •2-track trigger for Bs \rightarrow Ds π etc. Tracks: $p_T > 2$ GeV, $d_0 > 120$ µm ### •e/µ + displaced track trigger pT (e/ μ)>4 GeV with pT (track)>2 GeV, d₀>120 μ m #### First Run II paper! ### Bs \rightarrow Ds π reconstruction 700 event per fb⁻¹ of $Bs \rightarrow Ds \pi$ with $Ds \rightarrow \phi \pi$, $\phi \rightarrow K^+K^-$ $Br(Bs \to Ds^-\pi^+)/Br(B^0 \to D^-\pi^+)=1.4\pm0.2(stat)\pm0.2(syst)\pm0.4~(Br)\pm0.2(PR)$ ## Bs \rightarrow Ds π yield (CDF) ### Results so far are using early CDF data ### Detector coverage and SVT efficiency improved since SVX-II coverage (now ~90%) SVT hits requirement optimization $(4/4 \rightarrow 4/5)$ Better use of L2 trigger bandwidth (dynamic pre-scales) We are seeing a factor of 2 increase on Bs yield Current condition produces Bs at a rate 1600/fb⁻¹ Not count additional Bs/Ds channels yet Bs $$\rightarrow$$ Ds- π + π - π + / Ds \rightarrow K*K, KsK ## **Proper time resolution (CDF)** - $\sigma_t = (\sigma_{Lxy}/\beta\gamma) \oplus (\sigma_{pT}/pT) \cdot t$ - Proper time t= Lxy / $\beta \gamma$, $\beta \gamma = m / pT$ - σ_{Lxy} dominates for fully reconstructed events - $\sigma_{pT}/pT=15\%$ for semileptonic decay - From Bs \to Ds π sample $\sigma_{Lxy}\approx$ 50 μ m with run-averaged beam line and without using L00 hits - σ_{lxy} ≈ 40 ⊕ 30µm (SVX ⊕ beam) - $\sigma_t = 0.067 ps$ now for $Bs \rightarrow Ds \pi$ - $\sigma_t = 0.050$ ps achievable (L00+event-by-event beam line) ## Initial B flavor tagging at CDF/D0 ### Soft lepton tagging (SLT) - Semileptonic decay from the 2nd B - High purity and lepton can be part of a trigger ### Jet Charge Tagging (JetQ) - Correlation of b-flavor and charge of a b-jet - High efficiency but Low purity ### Opposite-side Kaon Tagging (OKT) - N(B⁰/B+→K⁺)/N(B⁰/B+→K⁻)≈5 due to the b→c→s - Need PID for tagging purity ## Flavor tagging at CDF/D0 Same Side Tagging (SST) $(\pi^- B+, \pi^+ B^0, K^+ Bs)$ correlations from b fragmentation or from B^{**} decays - No need for 2nd B in the acceptance - High efficiency and reasonable purity - PID will enhance purity ## • εD^2 = effective tagging efficiency - $\varepsilon = N_{tag}/N_{total}$ (efficiency of finding a tagger) - D = $(N_R-N_W)/N_{tag}$ (ability for a right decision) ## Flavor tagging results from D0 • Tested on $B^+ \rightarrow J/\Psi K^+$ events **SST**: $$\varepsilon D^2 = (5.5 \pm 2.0)\%$$ $(\varepsilon = 79.2 \pm 2.1\% \text{ and } D = 26.4 \pm 4.8\%)$ Muon: $$\varepsilon D^2 = (1.6 \pm 1.1)\%$$ $(\epsilon = 5.0 \pm 0.5\% \text{ and } D = 57.0 \pm 19.3\%)$ ### Jet-Q: $\varepsilon D^2 = (3.3 \pm 1.7)\%$ $(\epsilon = 46.7 \pm 2.7\% \text{ and } D = 26.7 \pm 6.8\%)$ #### D0 preliminary ### **SLT result from CDF** ### •Test on high statistics *l*+SVT events • Need to correct the Dilution (64%) from triggered lep+SVT pair due to mixing and charm/prompt background #### CDF Run-II Preliminary ### Tagging efficiency: $$\varepsilon \mathbf{D}^2(\mathbf{mu}) = (0.7 \pm 0.1)\%$$ ($\varepsilon = 1\%$) ## **SST** result from CDF #### SST on B+ \rightarrow J/ Ψ K+ and B+ \rightarrow D⁰K+ $$\varepsilon D^2 = (2.1 \pm 0.7)\%$$ (\varepsilon = \sigma 62\%) ## TOF and flavor tagging ### TOF has big effect on tagging purity - 2σ K-π separation for p<1.6 GeV/c which covers ~57% of the B tracks - Important for both OKT and SST-K ($\varepsilon D^2 2 \rightarrow 4.2\%$ for SST) ## Tagger Summary (CDF) | ε D ² (%) | Run-I | Run-II | Projection
w/o TOF | Projection with TOF | Key improvement | |-----------------------------|---------|---------|-----------------------|---------------------|-----------------| | SST-π/K | 1.5±0.4 | 2.1±0.7 | 2.0 | 2.0 - 4.2 | SVX/TOF | | SLT-μ | 0.6±0.1 | 0.7±0.1 | 1.0 | 1.0 | CMX/IMU/ISL | | SLT-e | 0.3±0.1 | | 0.7 | 0.7 | Plug Cal/ISL | | JetQ | 1.0±0.3 | | 3.0 | 3.0 | COT/SVX | | OKT | | | | 2.4 | TOF | - Measurements with early data are consistent with projections - Update soon with improved detector coverage and performance - Projection for CDF Bs mixing sensitivity will use: $$\varepsilon D^2 = 4\%$$ (w/o TOF) $\rightarrow 5\%$ (with TOF) ### Bs mixing sensitivity formula $$Significance = \sqrt{\frac{S \varepsilon D^2}{2}} e^{-\frac{(\Delta m_s \sigma_t)^2}{2}} \sqrt{\frac{S}{S + B}}$$ S = number of signal events S/B = signal/background ratio σ_t = proper time resolution εD^2 = effective tagging efficiency • It is the "averaged" significance of analyses using likelihood fittings $$significan ce = \sqrt{2\Delta \log L} \implies$$ ## CDF Bs mixing prospect with 500pb⁻¹ ### With current performance ``` S=1600 event/fb⁻¹ S/B=2/1 - \epsilon D^2 = 4\% (SLT+SST+JetQ) - \sigma_t = 0.067ps ``` - 2σ measurement if Δ ms=15ps⁻¹ from 500pb⁻¹ data - Expect 590pb⁻¹ 680pb⁻¹ from Tevatron by 2004 - Beat current limit from indirect measurements - Reach Standard Model favored region ## CDF Bs mixing prospect with 2fb⁻¹ - Expect Tevatron to deliver luminosity of - 2.11fb⁻¹ (based line) and 3.78fb⁻¹(design) by 2007 ### With modest improvement for CDF Add Ds \rightarrow K*K, KsK and Bs \rightarrow Ds- π + π - π + $S=1600 \rightarrow 2000 \text{ event/fb}^{-1}$ With improved TOF to enhance both SST and OKT $$\varepsilon D^2 = 4\% \rightarrow 5\%$$ With L00 silicon and event-by-event beamline $$\sigma_{\rm ct} = 0.067 \rightarrow 0.05 \,\mathrm{ps}$$ ## CDF Bs mixing prospect by 2007 Go beyond standard model preferred range 5σ measurement if Δ ms=18ps⁻¹ with 1.7fb-1 data 5σ measurement if Δ ms=24ps⁻¹ with 3.2fb-1 data ## **D0** Bs mixing sensitivity - Detail in Vivek Jain's talk on Tuesday - Projections with 500 pb⁻¹ data of inclusive muon trigger - Triggered muon used to reconstruct 15K Bs→Ds μ ν - Triggered muon used as flavor tagger for 700 Bs \rightarrow Ds π ## $\Delta\Gamma_s/\Gamma_s$ - Bs lifetime difference • The mass difference Δm_S and lifetime difference $\Delta \Gamma_S$ of the two CP eigenstates are linked by $$\Delta\Gamma_{\rm s}/\Delta m_{\rm s} = -3\pi/2 \cdot m_{\rm b}^2/m_{\rm t}^2 \cdot \eta(\Delta\Gamma_{\rm s})/\eta(\Delta m_{\rm s})$$ - The QCD factor doesn't depend on CKM - Δ ms and $\Delta\Gamma$ s measurements are complementary - $\Delta\Gamma_s$ could be large enough to be detectable ($\Delta\Gamma_s/\Gamma_s\sim15\%$) ## $\Delta\Gamma_s/\Gamma_s$ Measurements ### Three methods suggested for extracting $\Delta\Gamma_s/\Gamma_s$ - Fitting well-defined decay with two lifetimes - Fit $e^{-\Gamma_L t} + e^{-\Gamma_H t}$ for Bs \rightarrow Ds 1 v or Bs \rightarrow Ds⁺ π - Separate CP-even/odd states by transversity analysis - − Bs \rightarrow J/ Ψ ϕ is the familiar channel to CDF/D0 - Branching ratio from a pure CP state decay - Bs→Ds+Ds- a pure CP-even and triggered by CDF SVT trigger - Br(Bs \rightarrow Ds+Ds-) = $\Delta\Gamma_s/[\Gamma_s(1+\Delta\Gamma_s/2\Gamma_s)]$ - Need to separate Bs→Ds $^{+(*)}$ Ds $^{-(*)}$ with fine mass resolution ### $\Delta\Gamma_s/\Gamma_s$ from Bs semileptonic decays Plenty statistics from semileptonic decays Suffer from poor lifetime resolution due to partial reconstruction **Useful for limits** $\Delta\Gamma_s/\Gamma_s<0.83$ @95% CL from 600 Run-I signals Δms>5.8 ps⁻¹@ 95%CL from 700 SLT-tagged Run-I signals ## $\Delta\Gamma_s/\Gamma_s$ from Bs $\rightarrow J/\Psi\phi$ #### **CP** states follow distributions: $$3/8 \cdot (1 + \cos^2 \Theta_T) \rightarrow \text{CP-even}$$ $$3/4 \cdot (1-\cos^2\Theta_T) \rightarrow CP-odd$$ $\Theta_{\rm T}$ =Transversity angle **Run-I** with 58 events gives $\Gamma^{\text{CP-even}}/\Gamma = 0.778 \pm 0.090 \pm 0.012$ - •With 4K event \Rightarrow an error of 0.05 if $\Delta\Gamma_s/\Gamma_s=15\%$ (Run II B workshop) - •CDF result with 300 events from 220pb⁻¹ is coming ## **Summary** - A lot of progress on flavor tagging from CDF/D0 - We are collecting Bs \rightarrow Ds $^{-}\pi^{+}$ at 1600 event/fb $^{-1}$ - With 500 pb⁻¹ data, Bs mixing measurement reaches the Standard Model preferred region (Δm_s =15ps⁻¹) - With 2fb⁻¹ data, Bs mixing measurement will go beyond the preferred region (Δ ms>18ps⁻¹) - Precise $\Delta\Gamma_s$ / Γ_s measurements are also underway # Backup slides ## CDF/D0 Detectors Both detectors have very nice silicon device (lifetime), central tracking (mass) , calorimeter & muon system (e/ μ ID) and high bandwidth trigger/DAQ system CDF Silicon vertex trigger (SVT) trigger displaced track and e/µ TOF for particle ID 2σ K- π separation at 1.5 GeV Excellent mass resolution DØ **Excellent muon coverage** trigger μ for pT>1.5 and $|\eta|$ <2.0 **Excellent tracking acceptance** SMT+SFT covers $|\eta|$ <1.6 Silicon track trigger is coming ### Separating Bs \rightarrow Ds π from other B reflections Mass resolution is crucial in achieving decent S/B ### New B** result from D0 - D0 uses fully reconstructed B+ - − 65±17 out of 1193 B could be due from $B^{**0} \rightarrow B^{+}\pi^{-}$ - CDF Run-I used B semileptonic decays - Fraction of B from $B^{**} = 0.28 \pm 0.06 \pm 0.03$ ## **TOF** performance TOF is working and we are working on to improve its reconstruction efficiency $\phi \rightarrow K K decays$ ### $\Delta\Gamma_s/\Gamma_s$ from Bs \rightarrow Ds+Ds- •Br(Bs \rightarrow Ds+Ds-) = $\Delta\Gamma$ s/[Γ s(1+ $\Delta\Gamma$ s/2 Γ s)] Theory uncertainty could be large •Separates background of Ds* \rightarrow Ds γ using fine mass resolution Also introduce 3% error on proper time 32 $$\pm$$ 17 Bs \rightarrow Ds $^{+(*)}$ Ds $^{-(*)}$ \rightarrow ϕ $\Delta\Gamma_{\rm s}/\Gamma_{\rm s}=0.25 + 0.21 - 0.14$ (ALEPH) Channel is trigged with SVT of CDF Br (Bs $$\rightarrow$$ Ds+Ds-)/Br(Bs \rightarrow Ds+ π -) \approx 2 Reconstruction efficiency will be lower #### **GEANT for CDF** (Run II B workshop) This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.